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0. ABSTRACT

Properties of the Shewhart X-chart for controlling the mean of a

process with a normal distribution are investigated for the situation where
2

the process variance a must be estimated from initial sample data. The
control limits of the K-chart depend on the estimate of a2 and thus, unlike

the case when G2 is known, the -chart is not equivalent to a sequence

2
of independent tests. When a is estimated the distribution of the run

length is not geometric and cannot be characterized simply in terms of the

probability of a signal at a given point. The average run length (ARL) for

the K-chart is expressed in terms of an integral involving the normal cdf,

and it is shown that the chart signals with probability one, but the ARL

may not be finite if the size of the sample used to estimate a2 is suffi-

ciently small. In addition, certain bounds for the ARL are also derived.

Numerical integration is used to show that the effect of using small sam-

ple sizes in estimating a is to increase the ARL and the variance of the

run length distribution.

*This work was supported in part by Grant No. DAAG-29-78-G-0172 from the

U.S. Army Research Office.

KEY WORDS: X-Chart; Shewhart Chart; Process Control; Control Chart;

Estimated Variance; Economic Model; Average Run Length.
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1. INTRODUCTION

Control charts have long been used to detect changes in the distri-

bution of observations taken from a process that operates continuously

over time. Various criteria have been proposed to measure the perfor-

mance of a control chart when it is used to control a process. These

criteria aid in the design of charts to meet specific objectives and also

serve as a basis for comparing several competing procedures. The purpose

of this paper is to examine some of these criteria in terms of their ap-

propriateness with special reference to the Shewhart X-chart for control-

ling the process mean when the process variance in unknown.

Consider the situation where an independent sequence XIt X 2 ...

of random samples is taken at regular intervals from the process,

i - (X 1 , xi 2 , ... 'xin) being the sample of n observations taken on

the ith occasion. In most cases the distribution of the observations will

depend on one or more parameters represented by 8, which may be vector-

valued. The basic problem is to detect quickly any change in the value

of 8 by using the values of all observations taken up to the current time.

In some situations the initial control value, say 90, for a will be known

or specified in advance. In other situations one or more components of

So may be unknown, and it is necessary to estimate these values using the

observed data.

A process control procedure for detecting shifts away from 80 is a

procedure that at time i decides on the basis of X., X2' ... ,Xi whether

to continue sampling or to stop and signal that a change has occurred.

As long as the value of 0 remains constant at 80 we want to continue

sampling, but as soon as a significant shift occurs we want to stop.

If N represents the random time at which the procedure stops and signals,

then it is the distribution of N that determines the properties of the

procedure. In process control terminology, N is called the run ength.



4 3

As an example of a process control procedure, consider the standard

Shewhart X-chart for detecting shifts in the mean u of a process having

a normal distribution. This procedure signals that a shift has occurred

at the first value of i for which

X i Z: V0 + ka

where Xi is the mean of Xil X 1 , ... Xin' P 0 is the target or control

value for the process mean, k is a constant, and a is the process standard

deviation. In what follows it is convenient to express the process mean

in terms of 6 - (U - P )n/a, the case u - u then corresponding to 6 - 0.,

If both U0 and a are known (or specified), then the distribution of the

run length is geometric with parameter

P() - P(Xi : Uo + ka) - 1 - 0(S + kv'n)

since we are, in effect, performing a sequence of "independent tests" where

the ith test involves only the ith sample. Here 0(.) is the cumulative dis-

tribution function of the standard normal distribution. The parameter p(6)

completely determines the run-length distribution and thus the behavior of

this procedure can be summarized conveniently and naturally in terms of

this probability of a signal on a given occasion. In addition, if we let

61 be a value of 6 that represents a shift of interest, then the quantities

p(O) and l-p(61 ) can be thought of as the probabilities of errors of the

first and second type, respectively, for testing the statistical hypothesis

H: 6 - 0 against A: 6 - 61. This formulation using the concepts and ter-

minology of hypothesis testing is very natural to statisticians.

The drawback underlying p(6) as a general parameter for process

control procedures for detecting changes in 6 is that it may not be mean-

ingful for more complicated procedures such as cumulative sum (CUSUM) con-

trol charts, moving average charts, or Shewhart X-charts with estimated
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variance. For example, the probability that a CUSUM chart signals on oc-

casion i is not independent of i since, for this procedure, the decision

at stage i depends on l' K2' "'" ,i-I in addition to X,. When the pro-

cess variance is unknown and must be estimated from preliminary samples,

the procedure no longer entails a sequence of independent tests and the

run-length distribution cannot be characterized by the probability of a

signal at a given point. Thus, for general process control procedures,

some additional measures or parameters are needed to describe the run-

length distribution. One commonly used parameter is the mean Ee(N), called

the average run Zength (ARL). Another useful parameter is P (N : t), wheree
* •t is a fixed value.

One objective of this paper is to determine which of the measures

associated with the run-length distribution are most important in deter-

mining the characteristics of the procedure. This is done through the

development of a simple economic model in Section 2. Another objective

is to examine the properties of the X-chart when the variance of the pro-

cess must be estimated. In Section 3, various methods of estimating the

variance are discussed and the effect of estimated variance on the ARL is

investigated. Properties of the K-chart are usually calculated under the

assumption that a is known, but our results indicate that the actual

properties of the X-chart when a is estimated can be quite different from

the properties for the case when a is known. This distinction is often

ignored in the literature. Section 4 extends the results of Section 3 to

the two-sided X-chart.

2. AN ECONOMIC MODEL

* ITo determine the characteristics of the run length distribution that

are important determinants of the properties of a control chart, we may use
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an economic model that evaluates the impact on income and costs associated

with the use of a particular control chart (see Duncan (1956)). The economic

models that have been developed in the literature usually express the long-

term average net income per unit time for the process as a function of vari-

ous process parameters and of various parameters associated with the control

procedure. The usual objective in the design of control procedures is to

maximize this net income.

* A simplified economic model will now be developed to show how the character-

istics of the run-length distribution enter into the model. This model is

for a general process control procedure for controlling the general parameter

e in contrast to models in the literature which are specific to the procedure

and parameter. Assume that the process is operating in control when the con-

trol procedure is first applied and, for simplicity, let the unit of time

correspond to the time interval between samples. At some random time TO

(counted from the start of the procedure), the process mean shifts away from

the control value e 0 Assume for simplicity that there is only one possible

out-of-control state represented by the value eI . After the shift from e0

to 1 the process remains at 1 until the control procedure detects the out-

of-control situation and rectifying action is taken to return 0 to e0 . Ano-

ther in-control-out-of-control production cycle then starts at the instant

when e returns to 80. Thus, the long-term application of a control procedure

involves an infinite sequence of these in-control-out-of-control cycles.

By considering income lost due to operating the process out of control

as a cost, the objective of maximizing the long-term average net income per

unit time can be reformulated as a problem of minimizing the long-term aver-

age cost per unit time. In each production cycle the primary costs are those

K due to false alarms, to operating out of control, and to sampling. The long-

term average cost per unit time is obtained by finding the expected cost per

cycle and then dividing the latter by the expected length of a cycle (see

Johns and Miller (1963)).
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Let T represent the time (counted from the start of the cycle) when

the procedure detects the shift and 8 is returned to 80. Then T is just

the random cycle length. Let W represent the number of false alarms dur-

ing the part of the cycle when the process is in control. The cost per

cycle can then be represented by

C - c1(W) + c2 (T-T0) + c3 (T),

where the functions cl, c2, and c3 are given by

Cl(w) - cost due to w false alarms during a cycle,

c2(t) - cost due to operating out of control for t time units,

c3(t) - cost of sampling during a cycle of length t.

The long run average cost per unit time is therefore

, A - E(C)/E(T).

It seems reasonable to assume that the cost of false alarms, cl(W), is

directly proportional to W so that cI(W) = alW where a1 is a constant. In

this case E(c (W)) is approximately equal to a E(T0)/E M(N). This approxima-

tion can be justified as follows. Let Ni, N2 ... ,NW be the sequence of run

lengths between false signals during the in-control part of the cycle, and

let NW 1 be the run length after NW that would be required for a signal if the

shift from 80 to 61 does not take place. Then NW+ 1 has the same distribution as

N1  Thus
W W+l
i Ni < To < Z Ni

i-i i,,1

and, since E0 ( - (N),

E(T 0)/E0(N)-l S E(W) < E(T0)/E e(N).
0 0
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In many cases it may be reasonable to assume also that c2 (t) is of the

form a2t where a2 is a constant. Neglecting the fact that a shift can

occur between samples and assuming that the expected time to detect the

shift does not depend significantly on how long the control procedure

has been running in control, E(c2 (T-T0 )) is approximately equal to

a2E I(N). The expected cycle length E(T) is approximately E(T0) +

E0 (N). The sampling cost c3 (T) depends only on T and n. The long-
a13

r. term average cost per unit time then can be expressed as

alE(T0)/E a(N) + a2E a(N) + E(c3 (T))

AZ
E(T0) + E (N)

Thus A depends on the run-length distribution primarily through the ARL

values Eg (N) and Ee (N). This suggests that, if the economic model is
01

a reasonable representation of the actual cost and loss structure, the

primary measure of the effectiveness of control procedures is the ARL.

There may be situations, however, where the function c2 (t) is not

linear in t. For example, a small amount of low quality material pro-

duced while operating out of control may not be particularly damaging,

but if the out-of-control time exceeds a certain value then a complete

production run may be jeopardized. In this case the cost function could

take the form c2 (t) - 0 if t . tI and c2 (t) - a' if t > tI. In other

cases a cost function of the form c2 (t) - t2 might be appropriate. Thus,

in addItion to the ARL, parameters such as P (N>t or E 2(N2) may be

of interest in particular applications.

3. ONE-SIDED X-CHARTS WITH UNKNOWN VARIANCE

In this section we consider the one-sided Shewhart X-chart for de-

tecting shifts in the positive direction in the mean of a process having
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a normal distribution. A one-sided X-chart for detecting shifts in the

negative direction can be obtained by using a lower limit and the results

obtained in this section can be applied by replacing 6 with -6 where, as

before, 6 ( -o)n/. The two-sided X-chart will be discussed in Sec-

tion 4.

When the variance of the process is unknown, some form of estimate of

the variance must be used in the construction of the control limits for the

chart. The estimate of the variance can be obtained from the information

in each sample, or from an initial sequence of samples, or from a combina-

tion of the two approaches where the initial variance estimate is updated

as each new sample is taken. The variance estimates are traditionally based

on either the sample variance or the sample range. Since the sample vari-

ance is more efficient than the sample range, we will restrict attention

to situations where sample variances are used. We now look at the impli-
2

cations of the various ways of estimating a as they bear on the properties

of the X-chart.

If the sample variance

n
Si= (Xij-X i) 2 /(n-1)

for stage i is used as the variance estimator at stage i, then the procedure

that signals at the first i for which

X i 0 + kSi

is a sequence of independent tests. The parameter

p*(6) = P(Xi a V0 + kSi)

I ii llAl, I I I ... .. .. .. . .m : . .. ...".. ... .. . ..
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can be calculated using the noncentral t-distribution for any value of 6

and the ARL of the procedure is l/p*( 6). This procedure is not used widely

in praztice because n is usually too small to provide a reasonable estimate

of a2 when each sample is used independently. In addition, the procedure

must be carried out in its standardized version

i - 0)si k

*. in order to have the same upper limit at each stage, and this may inhibit

a visual interpretation of the plots since the chart is not showing the

actual sample means.

A second approach to the estimation of a2 involves the use of the same

initial estimate for each stage. In most cases this initial estimate is

based on a sequence of r initial samples, each of size m. In addition to

providing a variance estimate, these r samples can be examined further to

determine whether the process was in control with respect to variance at

the time that these samples were taken. If the r sample variances are

pooled to obtain the estimator

2 2 2S = Z S /ri-l

then the procedure signals at the first i for which

0 + kS.

This approach has the advantage that the chart shows the actual sample means.

Since the same S is used at each point, the procedure no longer entails a

sequence of independent tests, and the run-length distribution will not be

geometric. In this case the parameter

tp (6) - P(Xi 0 + kS)

will not suffice to characterize the run-length distribution.
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As an alternative to the pooled estimate of 02 from a sequence of ini-
2

tial samples, one large initial sample can be taken to estimate a 2. A dis-

advantage of this approach is that it is not possible to test for control

of the variance at the time the sample was taken.

2
A third approach to estimate 02 uses some kind of initial estimate and

then updates the estimate as each new sample is taken. Although this method

appears reasonable as long as the process variance is fixed, additional com-

putational effort would be required and the control limits would change after

each sample. In addition, the properties of such a procedure are quite dif-

ficult to determine.

A common practice in setting up a control chart is to take k = 3/A re-

2gardless of whether a is known or estimated from a small sample (for example,

see Duncan (1974)). Various authors (cf. King (1954), Proschan and Savage

(1960), Hillier (1964), and Yang and Hillier (1970)) have considered the

problem of choosing k when a2 is estimated. Yang and Hillier (1970) proposed

that k be chosen to give a specified value of pt(0). If the estimator S2 has

v - r(m-l) degrees of freedom, then the choice

k (,)/Ar
l-c

gives p (0) - a, where t1 (v) is the l-a fractile of the t-distribution

having v degrees of freedom. By choosing t1-a(v corresponding to c I .00135,

the value of pt(0) will be the same as the value of p(O) for k - 3/vn. Of

course, t1-a(v) can be chosen to give any other desired value of p+(O). The

problem with this approach is that the run-length distribution and ARL are still

unknown. It will be shown later in this paper that the actual ARL for the pro-

cedure using S as an estimator for a can differ substantially from the ARL

calculated under the assumption that pt(0) =p().

. . . . - - -



If the estimator S2 for a2 is a sample variance or a pooled sample var-

iance based on v degrees of freedom, then vS2/a 2 has a chi-squared distribu-

tion with v degrees of freedom when the process distribution is normal. Con-

sequently the run length N satisfies

P(N > t) = P(X < 0 + kS, i - 1, 2, ... ,t)

I / t (-a + 'In ) fs s)s
a S

1 o t(_ + c/-u1(v-2 )eUdu (3.1)

0

where f (s) is the density of S, and c - kv 2n7/. Unfortunately the integral

in (3.1) cannot be expressed in a simpler closed form. Nevertheless, certain
results for the run-length distribution can be established using (3.1). These

results are given in the following theorems, and the proofs are given in the

Appendix.

* THEOREM 1. For all values of k and 6, P(N < ) - 1 and lim P(N > t) t(-S+kru).

This theorem implies that the X-chart using an initial estimate of a eventually

will signal, whatever the values of u and a may be. Moreover, as the number
2

of degrees of freedom for the initial estimate of a grows larger, the distri-

bution of the run length converges to the geometric distribution for the case
2

where a is known. The results given in this theorem hold without the assump-

tion of normality.

The ARL of the X-chart can be expressed as

E(N) - E P(N > t).
t"O

Using this expression the following theorem can be proved.
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THEOREM 2.

(a) If c < 2 then E(N) < = for all 5.

(b) If c > Y1 hen E(N) - - for all a.

(c) If c - r2then E(N) < = for 6 > 0 and E(N) - =for 6 : 0.

(d) If E(N) < - then

' o ll(v-2) -u
SI u \2e

E(N) -2f du. (3.2)
r(~0 0- 0(-6 + cri)

(e) lim E(N) - Cl - o(-6 + krn)]-l.

This theorem gives the rather surprising result that under certain conditions

the ARL of the X-chart with estimated variance is not finite. The condition

c > 2 is equivalent to the condition v < k 2n. Thus if v, the number of de-

grees of freedom in the estimate of a2  is sufficiently small, the ARL is not

finite. In particular, if k is taken as the 3/-rn (the standard 3-sigma limits)

t then c > / if v < 9. If we take k -t la (v)/1n, following the suggestion in
i Yang and Hillier (1970),then c > / whenever v < t 2 M (e.g. when a - 0.001

the ARL is not finite if v s 14). However, if v is large, say 100, then

c < 2 if kVW < 9.95 and the ARL will be finite for values of k and n that

are likely to be used in applications.

The following general bound for the run-length distribution can be obtained.

THEOREM 3. For all values of 6, k, and v,

P(N S t) S I - (1-p (6)).

'Thus the run-length distribution is stochastically larger than a geometric

distribution with parameter p$ (6). This theorem holds regardless of the form of
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the underlying distribution of the observations, although computation of pt (6)

may be difficult for non-normal distributions. If the underlying distribution

is normal then

where t(v,6) has a noncentral t-distribution with v degrees of freedom and
* noncentrality parameter S. Suppose k is chosen as k - t (v)/n, following

1-a

the suggestion of Yang and Hillier (1960). Then, when the process is in con-

.trol, the geometric distribution with parameter a serves as a stochastic

lower bound for the run-length distribution. The theorem also provides a

lower bound for the ARL since

E(N) 1/p (P) .

Sharper bounds for the ARL under the assumption of normality are given

in the following theorems.

THEOREM 4. If 0 < c < /2 and 6 0, then

blb 2 : E(N) : b1b3  (3.3)

where

. (21r )r( (v+l)) 2 - V+l)

bP( v) C(l- C )9

b +-max (2-c 2 r((v)
2  max , cw r( (v+l)),

min _2-c
2  (2-c 2 r(v)

TE 5 I c2 c2 r( >0+)

THEOREM 5. If 0 < c < rand 6> 0, then
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{0() -1P( 2(v) :s 26 2IC2 ) + D max [A-0B, A+((2/7) - 6)B]

:5 E(N) s 2P(x 2(v) :5 2 6 2IC2 ) + D{A+(l-6)B}, (3.4)

where

D n- r(vl) 2 ) -(V+l)exp{ 2 /(2-c 21

A - vc E a1 P(x (v~1j)>d), B -2(1-- c2  v- b P(X (v-i)>d),

2 22 2-_1din26 {C (l c)

b a -I~ 6~_c2 i {jrhvl )-1

2

and where x2 (v) represents a chi-square random variable having v degrees of

freedom.

*THEOREM 6. If c - rand 6>O, then

A,/0(6) + K max[vA 3-62 A 2 P vA 3 + (( ir) - )A 2 1

S E(N) :S 2A, + K~vA 3 + 6(1-6)A 2] (3.5)

where

K -23 (V)r (1i(v+l) )e /6v+, A,1  ( (v)S.8 )2

A 2 =P(X 2(2v) <26 2),A 3 -P(X (2v +2) > 262).

Thus far we have examined the run-length distribution under the assump-

tion that 6 is constant for each sample. In many situations the shift away

* from the control value may take place gradually as a drift over a period of

time. Suppose that 6 1 is the value of 6 when the sample X is taken so that

6 (619 a 2 ... ) represents the set of values of 6S corresponding to the

sampling occasions. We now investigate the distribution of N as a function

of a.
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THEOREM 7. If 6 and S' are two sequences such that 6i 1 6' for all i, then

P 6(N :5 t) s P 6,(N :5 t).

The point of the theorem is that, whatever the form of the deviation from

the control value, the larger the shift the smaller the detection time. The

computation of the distribution of N for arbitrary 6 is difficult. Howevet,

if 6 is bounded as 6 5 6i 6 6, for all i, then letting 6 - (6, 6, ... ) and

* 6 (6, 6, ...) we have that

P 6(N -. t) : P 6(N 5t) 5P(

Thus the run-length distribution under the assumption of a gradual drift can

be bounded by run-length distributions for constant process mean. The con-

clusion of this theorem can be shown to hold under the general condition that

the observations are from a location parameter family with location parameter

6.

In order to determine the effect of estimated variance on the properties

of the X-chart, P(N > t) and the ARL were calculated using numerical integra-

tion. For the case where n - 4 and k - 3//n (the standard three-sigma limits),

Table 1 gives the ARL and Table 2 gives P(N>t) for several values of v and

6/tn (U-V0)/a. From Table I we see that the ARL is larger for small values

of v than it is for the case where a is known (v--). From Table 2 we see that

P(N>t) is smaller than expected when 6 - 0 and t - 100 but larger than expected

for 6 > 0. For example, if v - 29 the probability of stopping before 100

observations when in control is 0.2038 compared to 0.1264 when v - c. But if

6/n - 1, the probability of taking more than 20 samples to detect the out-of-

control situation is 0.0796 instead of 0.0316 when v - ®. One effect of using

an estimated variance is to increase the variance of N. This explains the

fact that,when 6 - 0, E(N) increases as v decreases while P(N > 100) decreases

as v decreases.
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The ARL values are larger for small values of v, and the effect of

using limits based on the t-distribution in place of the three-sigma limits

is to increase the ARL values even further. This suggests that if the

desired ARL values are those calculated for three-sigma limits when a is

known, then the limits for the case where a is estimated should be reduced

rather than increased. (Note that this is contrary to the recommendation

* iof Yang and Hillier (1970)).

* An additional complication arises in the estimation of a when r initial

samples of size m are tested for control with respect to variance before

being used to estimate a. The usual practice is to set up a control limit

and discard any sample from among the r samples that exceeds the control

limit. If we let S* be the resulting estimate of a then S* and S have dif-

ferent distributions. The run length N* for the X-chart in this case satis-

fies

P(N* > t) P tx i 5 40 + kslS*s)fs*(s)ds.
0

Now S based on the original sample is stochastically larger than S* and

(assuming k > 0) P(Xi : A0 + ksIS* - s) is increasing in s so that P(N*> t)

S P(N > t). This implies that E(N*) E(N). Thus the effect of testing for

control when the initial samples are taken is to reduce the ARL.
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4. RESULTS FOR TWO-SIDED SHEWHART CHARTS

In some situations it is desirable to detect shifts in either direction

from the control value u0' For this problem it is not necessary that the

control limits be symmetric about u0s but symmetric limits usually are used

in practice and we consider this case for simplicity. If an initial estimate

S based on v degrees of freedom is used to estimate a, then the two-sided

X-chart signals at the first i for which

1x 0 kS.Ii - .o10-1 s

Let N, N', and N" denote the run lengths of the one-sided chart for posi-

tive deviations, the two-sided chart, and the one-sided chart for negative

deviations, respectively. If the three procedures are applied simultaneously

using the same value of k then it follows that

N' - min{N,N"}.

Using the results and approach of Theorem 1 for the one-sided case we have

that P(N' < ',) 1 and lim P(N < t) - [0(-6 + kin) - (-6 - k/F-)]t.

Corresponding to THEOREM 2 for the one-sided case we have the following

result for the two-sided case.

THEOREM 8.

(a) If c < VT then E(N') < a.

(b) If c > r then E(N') -

(c) If c - r2 then E(N') < for 8 # 0 and E(N') - a for 6 = 0.

(d) If E(N') < - then

E(N') u (v-2) e-u d
1 f u (-2e-d

E(N') = r(--- 0 -(-64c¢i + 1(-6-c u

(e) lim E(N') = [1-4(-S + kru) + 4(-6 - klrn-)

The stochastic bound for the run-length distribution based on the
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geometric distribution also holds for the two-sided case when the parameter

p 1(6) is replaced by

P'(S) " P(I[C - 401/S 
>- k).

When the underlying distribution is normal,

p'(S) -P(it(v,5S)j >kV').

When 6 - 0, the expression for E(Vi') given in Theorem 8(d) reduces to

E(N)/2 where E(N) is given by Theorem 2(d). Thus bounds for E(N') for the

case 0 < c < VT and 6 - 0 can be obtained from the bounds for E(N) given in

Theorem 4.

Since N' - min(N,N") it follows that an upper bound for E(N') is given

by min(E(N),E(N")). When 0 < c < /2-and 6 > 0 an upper bound for E(N) is

given by Theorem 5. When 0 < c < / and 6 < 0 an upper bound for E(N") can

be obtained from Theorem 5 by using -6 in the bound for E(N).

Corresponding to Theorem 7 for the one-sided case, we have the following

theorem concerning the behavior of N' as a function of 6.
Nt

THEOREM 9. If 6 and S' are two sequences such that 16 1 !6i1 for all i,

then P6 (N < t) s P6 ,(N 5 t).

This result holds for any underlying distribution which is symetric and

unimodAl.
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APPENDIX

PROOF OF THEOREM 1. For any positive integer t

t

P(N > t) = f (6 + k n) dF (s). (Al)
0 0S

Since P t((-6 +ks n) 0 as t and 0(-d +ks n) - 1 for every s, it follows

from the dominated convergence theorem that

lir P(N > t) = f lim Ot(_S + is /n4)dFs )  0.
0 t- ~ a Fs~s

Hence P(N < ) . Since S - a a.s. as v - o and 1(-d + -s n) is contin-

a

uous and bounded, it follows that

lim P(N > t) = lim f ,t( + hks rn)dF (s) = Pt(d + kn).
V40 0 a S

The conclusions of the theorem hold under the more general condition that

the distribution of the observations be continuous with finite second moments

and support (-oo).

PROOF OF THEOREM 2. Denote the right-hand side of (Al) by at for t =

0, 1, 2, ... ,and let

0
t

g( ) - E a t for i < 1. (A2)
t=O

Then at z 0 for all t andE(N) E a.
t-O t

For part (a), if c < 0 then 1(cu-S) < 4(-6) for all u > 0, and a t <_ (t()

for all t. Since 0 < 0(-6) < 1 for all 6, Eat is absolutely convergent

and E(N) is given by (3.2). If 0 < c < 2 then by Tauber's second theorem,

lim g(4) - M < # at MM.

Now, for sufficiently small 1 1, we find
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g() = v) ; e du (A3)

and we shall show that g(C) is convergent for all jrJ51. Using (see

Birnbaum, 1942)

y + (y 2 4);,or 0

where 0(y) is the standard normal density, we get

1 - P c v--6) > 2$ (C V-S) 2 -if V- > 6/~c.
cvAu-d+ {(cri-S) +41

Hence, if 6!50 and 0 5 !5 1,

2 cc (-2 u(l- ~c2)-&cv'W
[el /2"7/2cr( v)] f [cv'u -6+{(cV -6) 2+411 ]u -2 e du<H <co.

0 1

Thus, g(C) exists for all W s 1, and (3.2) follows by letting C -) 1 .If

65 > 0, the proof is similar. One now splits the range of integration in (A3)

2 2 2 2into C0,6 /C) and [C6 /C , and applies the technique above to the second

integral.

For part (b), by Abel's theorem,

at< w =lim g(;) z a a.

Using (see Pollak, 1957)

1 - 0(y) < 2 (y fory >0 (A5)

y + (y 2+8/7T)

we get

* ~~1 - O(c/i6 cU- ~c-6) ) + /r if /UJ > 6/c.

Hence, if 6 5 0,
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16 2 2 ;,1 l- c -6cVg( ) > [e /2-w12r( v)] f [cVU-6 + {(ciu-6) 2 + 8/T} le- u-0-du0

The right-hand side diverges for = 1 and, since g( ) is continuous at

= 1, lim g() = . Consequently, E(N) -Ea t 
= 0 for all 6 _< 0. The proof

1-

is similar when 6 > 0.

For part (c), if 6<0, we find g(l) = by the method of part (b), and E(N)=-.

If 6 > 0, we find

2 (v_-2) e-u U (v-2)e -u
g(~) = O 6cVU) du + f 2 1 _____vi)d_g( P ( v) i-¢-c 2 I- (-6+c i du]< (i- ) ( v)

0

62 0-2)-Uu 62
+ 2 M( v) f [ u- ( 2vfu-6)2+4 u e du0 " 0

H <=

and (3.2) follows.

4 To prove the last part, we note S - a in probability, and h(S)

"l - D(-6 + Sn S)]-lis a continuous function. Consequently, h(S) - h(a) in

2
probability. It suffices now to show that supV E(h (S)) < (see Loeve, 1963,

Corollary 2 on p. 164). Using the facts that 1 - D(x) 1 1 - ¢(x0) for x < x0

and 1 - D(x) _ 4(x)(x' - x-3 ) for x > x0 , where x0 > 0 is fixed, it can be

shown after some algebra that

[1 0(_6 + S)]-2 < [1_(2+161)1- 2 if S<(2+j6t+6)a/k}'

262+5S2

!5 27r e if S>(2+j6j+6)o/kn

where

X A 2kn 262161
a-2 (1+2 1

(+6
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Since

2 2

for v > 2Aa +1, it follows that sup E(h 2(S)) 5 M, where

2 2 2 ; 2+M - -(2+IdI)J_ + 2re2  (l+2Xa 2)O

Consequently, E(N) -~ Cl-,D(-d+kV~n)1f as v -

PROOF OF THEOREM 3. From (3.1) we have

P(N > t) - E(It(-6 +-;- v'W-)).

Since (Dtis a convex function of 1, Jensen's inequality gives

=P((X - 0i )/S :5k

The theorem follows easily from this result. Note that the argument would

apply to any distribution function so that the conclusion of the theorem is

also valid for non-normal distributions with finite variance.

PROOF OF THEOREM 4. We use the basic expression (3.2) where 5 0. Using

(A-5) for 1 - (cllu) we gret

>(2r) 2 110(-2) -u(l- c 2E(N) / 7v Ccv'+ (c u +8r) u e du

Since c 2u+8/r > max{c 2u,8/7v} for all u > 0, the right hand side above yields,

upon integration, the first inequality in (3.3). Similarly, using (A4) and

cVW+ 'c~u4 mn2c'+( 1 c~) 2(cvCu+1)i, u 0,

in (3.2) we get the second inequality in (3.3).
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PROOF OF THEOREM 5. We shall use the basic expression (3.2) where ' > 0.

Write

E(N) = I 1 + I2

where

1 62/c 2  (1-2) -u 12 0 u (v-2) -udu~~~I -f{r(h ) } c i = r(v-)2)I
ilio l-f((S-crv) 2'1 2 l-(D(c,7-'S)

0 'S /c

2 2Since 0(0) !5 ((-cV'u) s (() for all 0 _5 u <5 6 /C, we find

{( 1)} p(X (v) <28 /c 2 ) < 1 < 2P(X 2 (v) < 2S 2 /c 2 ) . (A8)

2Consider now "2' Using (A4) and the fact {(cV--)+) +41 macV,/87 6+2 for

222

2 2

Using (A5) and the fact f(cv~u-) 28Tr - 22~yu-,A ]fru 8/

one gets

veS 2 u;u(v 2 )eu(l;c) c212 () 2 M(u)u e- cu du, (AlO)
2 r (;v) S /c2

where M(u) = 2(cu -6) or cv' -6+v8V7T.

Inequalities (A8) through (AlO) lead to (3.4).

PROOF OF THEOREM 6. The result follows by writing c - Y' in (A8) through

(AIO) and using the duplication formula for gamma functions.

PROOF OF THEOREM 7.

P (N > t) = P6(Xi - 0 kS, i=l, 2, ... t)

- f ii (-6i + -s YGn) f (s)ds.
0 i=l i S
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Since 0(-6 + ks n) is decreasing in 6i the result follows. Note that the

theorem holds under the more general condition that the observations are

from a location parameter family with location parameter S.

PROOF OF THEOREM 8. If either E(N) < - or E(N") < - then E(N') < since

N' min{N,N"}. Part (a) holds since E(N) < - for c < i2. Now

E(N') - r t: (- t + cvu) - (-6-cA)]tu (V-2)- e du (All), Z(N') = r( v--- t=0 o
_0 0

which is symmetric about 6 = 0. Moreover, E(N') decreased in 161 so that

E(N') is maximized when 6 = 0. Using methods similar to the proof for Theorem

2(b), part (b) can be proved by showing E(N') = when c > /2 and 6 = 0. When

6 # 0 part (c) follows from the fact one of E(N) and E(N") is finite. If

6= 0 we must again use methods similar to the proof for Theorem 2. If E(N')

< then part (d) holds since the summation and integration can be interchanged

in (All). The proof for part (e) uses the same methods as the proof of Theorem

7(e).

PROOF OF THEOREM 9. Following the proof of Theorem 7,

t
S(N' > t) = IT P6 (ji - p0l ! ksIS-s) fs(s)ds

0 Oi-l i

Since P6 i(1i - O ksIS-s) is decreasing inl6,i, the result follows. Note

that the theorem holds for any underlying distribution which is symmetric

and unimodal since this condition is sufficient to guarantee that the distri-

bution of X is symmetric and unimodal and this, in turn, implies that

P i(l 1 - Uo ksISs) is decreasing inl6 .
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- v=29 v=69 V==

0 2100.0 1088.6 740.8

0.5 75.9 53.8 44.0

1 8.0 6.9 6.3

2 1.2 1.2 1.2

3 1.0 1.0 1.0

Table 1. ARL values when a is estimated with v degrees of freedom.

t v=9 v-29 v-69 v-0a

0 100 .6900 .7962 .8384 .8736

0.5 100 .2329 .1774 .1427 .1001

1 20 .1375 .0796 .0543 .0316

2 2 .0639 .0382 .0307 .0252

3 1 .0064 .0025 .0018 .0013

Table 2. Value of P(N>t) when a is

estimated with v degrees of freedom.
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